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The process of tightening of the open trefoil knot tied on an elastic filament is analyzed. Evolution of the
curvature profile is presented and discussed.
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I. INTRODUCTION

Most of knots used in the everyday life are open �1�. As a
rule, the knots become useful when they are brought to tight
conformations since only then friction prevents them from
untying. The most tight conformations of a few simple knots
have been studied previously. In Ref. �2�, Saitta et al. pre-
sented results of a numerical simulation in which the over-
hand knot tied on an n-decane molecule was subject to the
tightening. The authors reported appearance of sharp curva-
ture maxima located close to the entrances of the knot. In
Ref. �3� we analyzed in detail the curvature and torsion pro-
files of the 31 �overhand� and 41 �figure eight� open knots
tied on the slippery floppy hard rope, i.e., such a model of
the real rope in which one assumes that it is perfectly slip-
pery and floppy but at the same time perfectly hard in its
circular sections. The study also indicated that curvature of
the tightest conformations of the knots tied on such a rope
reaches its maximum close to the entrance where character-
istic asymmetric double peaks are observed. Following the
observation a hypothesis was formulated that real ropes, on
which the knots were tied, would break at the maximum
curvature points. Experiments performed with knots tied on
cooked spaghetti �4� verified positively the hypothesis while
analogous experiments carried out with a poly�vinylidene
fluoride� fishing line contradicted it by demonstrating that
overhand knots tied on such filament brake at a points lo-
cated inside the knots, far from the entrance �5�.

Recently, Audoly et al. �6� presented an approximate the-
oretical analysis of laboratory experiments in which single
and multiple overhand knots were tied and tightened on an
elastic rod of nitinol. The authors demonstrated convincingly
that their approximate theory describes well a number of
experimentally established facts such as the appearance of
very thin gaps in the braided regions of the tightened knots.
Encouraged by the success of their theory in the description
of knots at the beginning of their tightening process the au-
thors presented in Sec. IV some preliminary results concern-
ing the final stages of the process and confronted them with
results of our numerical study of the most tight overhand
knot tightened on a floppy rope �3�. In Fig. 6 they plotted the
theoretically predicted curvature profile of the overhand knot
in a more tight state indicating the cusplike maxima localized
close to the center of the knot. Subsequently they formulated
a conjecture that the much higher and differently localized
maxima we described for knots tied on floppy ropes do not

appear in knots tied on elastic rods since they are “regular-
ized by elasticity.” It is our aim to falsify this conjecture by
presenting results of a precise numerical study of the evolu-
tion of the curvature profile for the overhand knot tightened
on the slippery elastic hard rope �SEHR�. We shall demon-
strate that although in the initial stage of the tightening pro-
cess the maximum curvature points are indeed localized in-
side the knot, at the end of it, four new, distinct maxima
appear close to the entrance of the knot.

II. NUMERICAL PROCEDURES

Before the results of numerical simulations that we have
performed are discussed, let us present the hypothetical labo-
ratory experiment that the simulations are aimed to mimic. A
piece of SEHR of length L and radius R=1, on which the
overhand knot has been tied, is stretched between two points
located at a distance d�L. The whole knot should be seen as
submerged in a high viscosity fluid which overdamps its dy-
namics �see Fig. 1�. Subsequently, the distance d is enlarged
in steps until the knot becomes perfectly tight. At each step
of the tightening process, the knot finds spontaneously free
from overlap conformation that minimizes its elastic energy
�7�,

UE =
1

2
E�

0

L

�2�s�ds , �1�

where ��s� is the curvature profile of the knot, i.e., the de-
pendence of its curvature � on the arc-length parameter s and
E is the elastic �bending� modulus of the rope. What happens
in nature spontaneously must be simulated in numerical cal-
culations by an appropriate algorithm. For the sake of brev-
ity, we do not present here all its technical details. Let us
present, however, its basic assumptions.

The numerical model of the rope, on which the studied
overhand knot has been tied, is discrete. The rope is repre-
sented in the simulations by a sequence of equidistant N
points vi= �xi ,yi ,zi�, i=1,2 , . . . ,N referred to in what follows
as vertices; thus, the simulated knot consists of N−1 stiff

*piotr.pieranski@put.poznan.pl FIG. 1. Geometry of the simulated tightening experiment.
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segments ei=vi−vi−1, i=2,3 , . . . ,N of a fixed common
length dl. From the practical point of view the simulated
knot is thus equilateral. Let us denote it by Kp.

As indicated by Rawdon �8�, it is possible to inscribe into
Kp a continuous knot Kc of piecewise constant curvature. Its
elastic energy is given by the sum,

UE =
1

2
E�

i=2

N−1
li

ri
2 , �2�

where ri is the curvature radius of the arc inscribed into the
ith corner of the polygonal knot and li is the length of the arc.
To make the definition of the inscribed knot complete, we
treat the first half of the first segment and the second half of
the last segments as shorter arcs of zero curvature. Thus, l1

= lN= dl
2 and r1=rN=�.

The based on the finite element method �FEM� algorithm
developed by one of us �S.P.� aims at minimizing the elastic
energy of the knot by changing orientations of its segments
but guarding it at the same time from self-overlapping. From
the physical point of view the algorithm simulates the hypo-
thetical laboratory experiment described at the beginning of
the present section.

During the simulations the end vertices of the knot, v1 and
vN, are fixed on the x axis of the reference frame, however,
the spatial orientations of the first and the last segments re-
main free. From the physical point of view such boundary
conditions imply that the end vertices of the knot are subject
to tension T, but no torque is applied to the end segments.

The distance between the ends of the tightened knot

d = xN − x1, �3�

while the length of the inscribed knot Kc

Lc =
dl

2
+ �

i=2

N−1

li +
dl

2
�4�

�see Fig. 2�. The simulation itself and the postsimulation cal-
culations are carried out in such a manner that eventually the
subject to analysis that inscribed knot may be seen as free
from self-overlap knot tied on a SEHR of unit radius: R=1.

All details of the inscribed knot construction and its fur-
ther interpretation are described in detail in Ref. �8�, where
we applied the method of Rawdon �8� for interpretation of
the closed trefoil knot tied and tightened on SEHR by the
shrink or no overlaps �SONO� algorithm. The FEM algo-
rithm that we have used here is different, but since the struc-
ture of the subject to the algorithm polygonal knot is the
same, the technique of Rawdon �8� applies without any
changes.

At the end of each of the FEM runs carried out at different
values of d, the coordinates of the vertices of the final con-

formation were registered. Using the data we subsequently
calculated the effective knot length of the inscribed knot
LK=Lc−d, its the curvature profile ��s�, and its total elastic
energy UE defined by Eq. �2�. As mentioned above, due to
the particular construction of the inscribed knot Kc its curva-
ture profile is piecewise constant. To formulate its formal
description let us introduce first the sequence of the discrete
values of the arc-length parameter s,

s0 = − � ,

s1 = s0 +
dl

2
,

si = si−1 + li, i = 2,3, . . . ,N − 1,

sN = sN−1 +
dl

2
= Lc − � . �5�

��
Lc

2 is an experimentally determined value shifting the
arc-length parameter s so that the center of symmetry of the
simulated knot would be located at s=0. This simplifies vi-
sual analysis of all plots.

Assuming that r1 and rN are infinite and using the defined
above si values one may define the piecewise constant cur-
vature profile of the inscribed knot as

��s� =
1

ri
, s � �si−1,si�, i = 1,3, . . . ,N . �6�

For the sake of an easier analysis of the presented below
results in terms in Ref. �6�, we shall also use there the de-
fined variable,

� =�2�

LK
. �7�

III. RESULTS

The most essential characteristic of a knot tied on SEHR
is the dependence of its elastic energy UE on the effective
knot length LK. Figure 3 presents the plot of the whole de-
pendence obtained from our simulations. Precise values of

FIG. 3. Energy of the overhand knot tightened on a slippery,
hard, elastic rope of radius R=1 vs the effective knot length LK

�E=1�.

FIG. 2. Details of the inscribed knot construction.
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the energy are here crucial since, if the results of our simu-
lations were to be compared with results obtained by other
authors, one should first compare values of the elastic en-
ergy. To make such a comparison easier we provide also a
table within which some of the values plotted in Fig. 3 are
given �see Table I�.

Since the elastic energy UE of a knot tightened on SEHR
is directly connected with its curvature profile ��s�, we
present also evolution of the latter versus the effective knot
length LK �see Fig. 4�. The figure covers the range of LK from
25.00 to 20.20 which in terms of the � parameter is equiva-
lent to the interval �0.50, 0.56�.

Before we look at the shapes of a considerably tightened
overhand knot let us first analyze it in the case of a loose
knot LK=80. Figure 5 presents the details of its structure. We
clearly see two isolated points of self-contact and a short
braided region. In the intervals between the braided region

and the isolated contact points one observes the very thin
gaps described in Ref. �6�. As the knot becomes tightened,
the braided region becomes wider which limits the space left
for the gaps. Figure 6 presents the curvature profiles found at
LK=25.00 ��=0.50� and LK=23.20 ��=0.52�.

Looking at the curvature profile at LK=23.20 ��=0.52� we
clearly see that the gaps have vanished—the isolated points
of contacts joined the growing braided region. Comparing
the curvature profile with the profile presented by authors in
Ref. �6�, in Fig. 6 we see a clear qualitative difference: the
central cusplike maxima reported in Ref. �6� are not present
in our curvature profile.

The gaps reported in Ref. �6� vanish at LK=24.50. Close
to the same value of LK maxima marked as C in the curva-
ture profile reaches 1

2 value, which is characteristic to the
situation when one piece of the rope winds tightly around
another piece of it. This ends the first stage of the knot tight-
ening process.

In the second stage of the tightening, covering the effec-
tive knot lengths from 24.50 to 20.55, the curvature profile

TABLE I. Energy of the overhand knot tightened on a slippery,
hard, elastic rope of radius R=1 vs the effective knot length LK

�E=1�.

LK � UE

120.06 0.2288 0.200

84.041 0.2734 0.305

66.032 0.3085 0.407

48.023 0.3617 0.609

40.019 0.3962 0.775

32.015 0.4430 1.061

28.013 0.4736 1.295

25.003 0.5013 1.550

23.603 0.5160 1.711

23.203 0.5204 1.765

22.302 0.5308 1.911

21.502 0.5406 2.094

20.902 0.5483 2.309

20.501 0.5536 2.553

20.381 0.5552 2.666

20.196 0.5578 3.258

FIG. 4. Evolution of the curvature profile of the overhand knot
tied and tightened on the slippery, hard, elastic rope vs the effective
knot length LK. In terms of the � parameter the plot covers its range
from 0.50 to 0.56.

FIG. 5. Details of the shape of a loose overhand knot: LK

=80.00 ��=0.28�. A half of the curvature profile is shown in the
upper part of the figure. With the thick line we marked the places, in
which the knot remains in a self-contact as indicated by the lower
part of the figure, where the doubly critical self-distance is plotted.

FIG. 6. Details of the curvature profiles found at LK=25.00 ��
=0.50� and LK=23.20 ��=0.52�. The latter profile has been shifted
up by 0.2. Regions at which the knot remains in the self-contact are
marked with thick lines. Since the profiles are symmetrical we pre-
sented only a representative half of them.
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develops almost flat parts located around �=0.5. At the same
time the outer maxima localized at the entrances of the knot
shift up. As a result, at the end of this stage, except for the
middle part of the knot, where the rope remains free from
self-contacts, the curvature profile is almost flat.

The third end stage of the tightening process is shortest
but most subtle. It covers the range of LK from 20.50 to
20.20. One observes here formation of double peaks of cur-
vature located at the entrance of the knot �see Fig. 7�. These
are the maxima, which we have reported in �3� and whose
existence in knots tied on an elastic rope has been put in
doubt by Audoly et al. in Ref. �6�. Figure 7 provides the
direct proof that the maxima are not regularized by elasticity.

Let us analyze the dependence of the knot energy UE on
its decreasing effective length LK. Although the changes in
the effective knot length are here very small, its energy
grows very rapidly �see Fig. 8�. Let us emphasize that al-
though the rate at which energy grows becomes infinite as
the knot approaches its most tight conformation, the final
value of energy is finite. As we have found out the growth of
energy is well described by the formula having the following
form:

UE = UE
max�1 − �	
� , �8�

where

	 =
LK − LK

min

LK
min . �9�

Numerical analysis provides the following values of the
parameters: �=0.869 and 
=0.333. The final value of en-
ergy UE

max=3.258 and it is located at LK
min=20.196. This is the

length at which the knot subject to the infinite tension T
reaches its most tight conformation Kmin. Figure 9 presents
its curvature profile. The double peaks noticed in Ref. �3�
located close to the entrance are well visible. Higher accu-
racy of the present simulations allows us to get a better in-
sight into the tightest knot structure. The most essential ob-
servation is that the curvature hits the upper limit �=1
imposed by the condition that the rope is hard in its circular
sections. Let us also notice that as expected in this most tight
conformation the ends and the middle parts of the knot are
straight, i.e., their curvature is equal to zero.

IV. CONCLUSIONS

Numerical simulations whose results we presented above
demonstrated clearly that maxima of curvature of the over-
hand knot tied on an elastic rope change their positions dur-
ing the tightening process. For small tensions applied to the
free ends of the knot the maxima are located inside the knot
but as the tension becomes high, the maxima turn into almost
flat plateau and eventually, at the end of the tightening pro-
cess, much higher double peaks of curvature appear close to
the entrance of the knot. The theory developed by Audoly et
al. �6� is not able to account for this phenomenon. This result
is essential in the discussion on the position of the breaking
point since it indicates that whether the knot subject to ten-
sion will break at a point located close to its center or close
to its entrance depends on the stage of the tightening process
at which the breaking happens. Let us, however, point out
that, as indicated by the experimental study performed by
Uehara et al. �5�, the problem of the knot breaking is more
complex and considering it within the hard rope models may
be not sufficient. It seems necessary to take into account not
only the curvature profile of the knotted rope but also the
profile of the deformation of its perpendicular sections. This
needs working with such models of the rope that are not
hard.
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FIG. 7. Evolution of the curvature profile at the end of the
tightening process. LK� �20.50,20.20�.

FIG. 8. Dependence of the elastic energy UE on effective knot
length LK observed for the overhand knot tied on SEHR at the end
of the tightening process.

FIG. 9. Curvature profile of the most tight overhand knot tied on
the slippery elastic hard rope.
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